THE CHINESE UNIVERSITY OF HONG KONG
 Department of Mathematics
 MATH 2078 Honours Algebraic Structures 2023-24 Tutorial 9 Solutions
 25th March 2024

- If you have any questions, please contact Eddie Lam via echlam@math.cuhk.edu.hk or in person during office hours.

1. Let I, J be ideals, in particular they are additive subgroups of $(R,+)$. Then $I \cap J$ is again an additive subgroup, since the intersection of subgroups is again one. Let $r \in R$ and $x \in I \cap J$, then $x \in I$ and $x \in J$, so that $r x, x r \in I$ and also in J, so they are in $I \cap J$.
Similarly, $I+J$ is an additive subgroup since if $x=a+b, y=c+d \in I+J$, then $x-y=(a+b)-(c+d)=(a-c)+(b-d) \in I+J$. Now let $x=a+b \in I+J$ and $r \in R$, then $r \cdot x=r a+r b$ and $x \cdot r=a r+b r$. Since I, J are ideals, $r a, a r \in I$ and $r b, b r \in J$, so that $r \cdot x$ and $x \cdot r$ are in $I+J$.
2. Let I_{i} be an ascending chain of ideals in R, if $a, b \in I:=\bigcup_{i=1}^{\infty} I_{i}$, then there exists a large enough n so that $a, b \in I_{n}$, so $a-b \in I_{n} \subset I$. So I is an additive subgroup. Now if $r \in R, x \in I$, then $x \in I_{n}$ for some n, then $r x$ and $x r$ are in $I_{n} \subset I$.
3. Let $r \in R$ and $\sum_{i=1}^{n} a_{i} s_{i}, \sum_{j=1}^{m} b_{j} s_{j}^{\prime} \in\langle S\rangle$, then WLOG we may assume that $s_{i}=s_{j}^{\prime}$ for $i=j$, otherwise we may simply relabel the s_{j}^{\prime}. Then $\sum_{i=1}^{n} a_{i} s_{i}-\sum_{j=1}^{m} b_{j} s_{j}=$ $\sum_{i=1}^{\max m, n}\left(a_{i}-b_{i}\right) s_{i} \in\langle S\rangle$, where we define s_{i} and s_{j}^{\prime} to be zero if $i>n$ and $j>m$. This shows that $\langle S\rangle$ is an additive subgroup. Also, $\left(\sum_{i=1}^{n} a_{i} s_{i}\right) \cdot r=r \cdot \sum_{i=1}^{n} a_{i} s_{i}=$ $\sum_{i=1}^{n}\left(r a_{i}\right) s_{i} \in\langle S\rangle$, since R is assumed to be commutative. Therefore $\langle S\rangle$ is an ideal. Note that $\langle S\rangle$ as defined may not be an ideal if R was not assumed to be commutative.
If I is any ideal so that $S \subset I$, then by property of ideal, $\sum_{i=1} a_{i} s_{i} \in I$. In particular, this implies that $\langle S\rangle \subset \bigcap_{S \subset I} I$. Conversely, $\langle S\rangle$ is an ideal so that $S \subset\langle S\rangle$, therefore $\bigcap_{S \subset I} I \subset\langle S\rangle$ since it is one of the ideals that we are taking intersection of.
If J is some ideal so that $S \subset J$, then $\langle S\rangle=\bigcap_{S \subset I} I \subset J$.
4. Let $I \subset \mathbb{Z}$ be a nontrivial ideal, let $n>0$ be the smallest positive number in I. Since $n \in I$, we have $a \cdot n \in I$ for any $a \in \mathbb{Z}$, so that $n \mathbb{Z} \subset I$.

On the other hand, if $x \in I$ is a nonzero integer, since $x \in I$ if and only if $-x \in I$, we may assume that $x>0$, by Euclidean algorithm, we have $x=k n+r$ where $k \geq 0$ and $n>r \geq 0$. Now $x, n \in I$, so that $r=x-k n \in I$, this forces $r=0$ since we assumed that n is the smallest positive integer in I. So we obtain $x=k n$, i.e. $x \in n \mathbb{Z}$.
5. (a) Suppose that R has characteristic $n>0$, then $n \cdot r=n \cdot\left(1_{R} \times{ }_{R} r\right)=\left(n \cdot 1_{R}\right) \times_{R} r=$ $0_{R} \times_{R} r=0_{R}$.
(b) Suppose R does not contain a zero divisor, if R has characteristic $n>0$, then $\varphi(n)=n \cdot 1_{R}=0_{R}$ by assumption. If $n=a b$ for some positive integers a, b, then $0_{R}=\varphi(n)=\varphi(a b)=\varphi(a) \varphi(b)$. This forces $\varphi(a)=0_{R}$ or $\varphi(b)=0_{R}$ since R does not contain zero divisor. Then $a \in n \mathbb{Z}$ or $b \in n \mathbb{Z}$, i.e. a or b is a multiple of n. This implies that n is a prime number, since a, b are arbitrary integer factors of n.
(c) To show that f is a ring homomorphism, note that $f(x+y)=(x+y)^{p}=\sum_{i=0}^{p}\binom{p}{i} x^{i} y^{p-i}$, note that the coefficients $\binom{p}{i}$ are divisible by p for $i=1,2, \ldots, p-1$. By (a), this implies that $\binom{p}{i} x^{i} y^{p-i}=0_{R}$ for $i=1,2, \ldots, p-1$. So that $f(x+y)=x^{p}+y^{p}=$ $f(x)+f(y)$. We also have $f(x y)=(x y)^{p}=x^{p} y^{p}=f(x) f(y)$ since R is commutative. And $f\left(1_{R}\right)=1_{R}^{p}=1_{R}$.
If R is an integral domain, then $f(x)=x^{p}=0_{R}$ only if $x=0_{R}$, otherwise R has a zero divisor. Therefore $\operatorname{ker}(f)=\left\{0_{R}\right\}$ so f is injective.
6. Define $\varphi: \mathbb{Z}[x] \rightarrow R$ by $\varphi(x)=a$ and $\varphi(1)=1_{R}$, this determines $\varphi(p(x))$ for any $p(x) \in \mathbb{Z}[x]$ since we may write $p(x)=\sum_{i=0}^{n} c_{i} x^{i}$, then $\varphi(p(x))=\varphi\left(\sum_{i=0}^{n} c_{i} x^{i}\right)=$ $\sum_{i=0}^{n} \varphi\left(c_{i}\right) \varphi(x)^{i}=\sum_{i=0}^{n} c_{i} a^{i}=p(a)$. Here, c_{i} refers to the element $c_{i} 1_{R} \in R$. It is clear that when defined this way, φ is indeed a ring homomorphism from the formula $\varphi(p(x))=p(a)$.
Now if R^{\prime} is a subring of R so that $a \in R^{\prime}$, then by property of subring, $1_{R} \in R^{\prime}$ and any products of $a \in R$. Therefore if $p(x) \in \mathbb{Z}[x]$ is a polynomial, then $p(a)=\sum_{i=0}^{n} c_{i} a \in R^{\prime}$. This shows that $\operatorname{im}(\varphi) \subset R^{\prime}$.
7. Let $r, s \in \operatorname{Nil}(R)$, then $r^{n}=0_{R}=s^{m}$ for some $m, n>0$. Then $(-r)^{n}=(-1)^{n} r^{n}=$ 0_{R} so $-r \in \operatorname{Nil}(R)$. And $(r+s)^{m+n}=\sum_{i=0}^{m+n}\binom{m+n}{i} r^{i} s^{m+n-i}$. Note that each term of the sum contains r^{i} for $i \geq n$ or s^{j} for $j \geq m$. Therefore each term is 0_{R}, and $(r+s)^{m+n}=0_{R}$, this shows that $r+s \in \operatorname{Nil}(R)$. Now if $a \in R$ is any element, $(r a)^{n}=(a r)^{n}=a^{n} r^{n}=0_{R}$ as well, so $\operatorname{Nil}(R)$ forms an ideal.

